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A B S T R A C T   

In multiple sclerosis, the interplay of neurodegeneration, demyelination and inflammation leads to changes in 
neurophysiological functioning. This study aims to characterize the relation between reduced brain volumes and 
spectral power in multiple sclerosis patients and matched healthy subjects. 

During resting-state eyes closed, we collected magnetoencephalographic data in 67 multiple sclerosis patients 
and 47 healthy subjects, matched for age and gender. Additionally, we quantified different brain volumes 
through magnetic resonance imaging (MRI). 

First, a principal component analysis of MRI-derived brain volumes demonstrates that atrophy can be largely 
described by two components: one overall degenerative component that correlates strongly with different 
cognitive tests, and one component that mainly captures degeneration of the cortical grey matter that strongly 
correlates with age. A multimodal correlation analysis indicates that increased brain atrophy and lesion load is 
accompanied by increased spectral power in the lower alpha (8–10 Hz) in the temporoparietal junction (TPJ). 
Increased lower alpha power in the TPJ was further associated with worse results on verbal and spatial working 
memory tests, whereas an increased lower/upper alpha power ratio was associated with slower information 
processing speed. 

In conclusion, multiple sclerosis patients with increased brain atrophy, lesion and thalamic volumes demon
strated increased lower alpha power in the TPJ and reduced cognitive abilities.   

1. Introduction 

The prevalence of cognitive impairment (CI) in multiple sclerosis is 
estimated between 40 and 70% (Chiaravalloti & DeLuca, 2008). 
Whereas information processing speed is the most commonly affected 

cognitive domain (Strober et al., 2009), attention, working memory and 
verbal fluency are also frequently affected (Langdon et al., 2012). 
However, assessing a patient’s cognitive status is a time-demanding 
task. Furthermore, as there are only a limited number of standardized 
cognitive tests, the results are prone to practice effects (Van et al., 2014). 
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Therefore, a biomarker that can objectively assess a patient’s cognitive 
status would be of great value. One candidate for such a biomarker is the 
quantification of the volume of different brain structures based on 
magnetic resonance imaging (MRI). However, although brain atrophy is 
a well-known feature of MS, its correlation with a patient’s cognitive 
status is currently not sufficient (D’hooghe et al., 2019). 

A potential alternative biomarker is the characterization of the 
brain’s activity measured through electro- or magnetoencephalography 
(EEG/MEG) or functional MRI (fMRI). Whereas fMRI is most widely 
used, it captures only the slow fluctuations and may be affected by 
hypoperfusion (D’haeseleer et al., 2015; Zhang et al., 2019). In contrast 
to fMRI, EEG and MEG measure the electrical activity more directly, i.e., 
without convolution with the hemodynamic response function. Whereas 
both pick up similar sources, MEG is generally considered to have a 
better spatial resolution. For a more detailed comparison see (Lopes 
et al., 2013). 

In the absence of a specific task, the brain’s electrical activity can be 
characterized in different ways: one way is the construction of cortical 
networks by calculating the correspondence between time series 
measured at different locations (Brookes et al., 2011; Sjøgård et al., 
2019). Another is the analysis of the different time series as a series of 
short-living transient networks (Baker et al., 2014; de Pasquale et al., 
2012; O’Neill et al., 2015; Van Schependom et al., 2019; Vidaurre et al., 
2016). Yet, a straightforward candidate is the power spectrum density 
(PSD) in different brain regions. Engemann et al recently demonstrated 
that adding MEG PSD substantially improved age prediction (Engemann 
& Combining, 2020). 

Power spectral density estimates have already been successfully 
explored as potential biomarkers for cognitive functioning in MS. Using 
EEG Leocani et al. demonstrated a stronger theta power in frontoparietal 
regions in MS patients (Leocani et al., 2000), whereas Van Schependom 
et al. reported a weaker delta power in the frontoparietal regions in MS 
(Van Schependom et al., 2019). With relation to cognitive impairment, 
Keune et al recently demonstrated an association between increased 
global lower and upper alpha power and an increased frontal theta/beta 
ratio, a marker of attention control, with lower scores of information 
processing speed (Keune et al., 2017, 2019) . Furthermore, Schoonhoven 
et al reported a decreased alpha peak frequency in cognitively impaired 
MS patients (Schoonhoven et al., 2019). Interestingly, alpha oscillations 
at least partially arise from thalamocortical feedback loops (Hindriks 
et al., 2015) and both thalamic atrophy and alpha oscillations have been 
consistently linked with cognitive impairment in MS (Houtchens et al., 
2007; Razvan et al., 2018; Tewarie et al., 2013) 

Yet, to the best of our knowledge, we are not aware of studies linking 
MS-induced structural damage to changes in electrophysiological spec
tral power as assessed through EEG or magnetoencephalography (MEG). 
In this paper, we quantify MRI-based volumes and the MEG power 
spectral density in a large cohort of MS patients and healthy subjects. 
Our goal is to understand how damage to the brain’s structures affects 
brain functioning by correlating whole-brain MR markers with MEG 
power spectral density. 

2. Methods 

2.1. Patient population 

From 2015 to 2018, we collected MEG data and T1- and FLAIR- 
weighted MR images in a cohort of 67 MS patients and 47 healthy 
subjects (HS), matched on age and gender. Patients with MS were 
recruited at the National MS Center Melsbroek (Belgium). Inclusion 
criteria were: diagnosis with relapsing remitting MS according to the 
revised McDonald criteria (Polman et al., 2011), age between 18 and 60 
years old, and having an Expanded Disability Status Scale (EDSS, 
(Kurtzke, 1983) ≤ 6. Exclusion criteria were a relapse or treatment with 
corticosteroids in the 6 weeks preceding the study, pacemaker, dental 
wires, concomitant psychiatric disorders (e.g., major depressive 

disorder), epilepsy and benzodiazepine treatment. 

2.2. MEG and MRI assessment 

The MEG data was collected at the CUB Hôpital Erasme (Brussels, 
Belgium) on an Elekta Neuromag Vectorview scanner (Elekta Oy, Hel
sinki, Finland) for the first 30 multiple sclerosis patients and 15 HSs and 
on an Elekta Neuromag Triux scanner (MEGIN, Croton Healthcare, 
Helsinki, Finland) for the remaining cohort due to an upgrade in the 
facilities. Both MEG scanners share similar sensor layout (102 triple 
sensors, each consisting of one magnetometer and two orthogonal 
planar gradiometers) and were placed in a lightweight magnetically 
shielded room (MaxshieldTM, Elekta Oy, Helsinki, Finland). As changes 
with respect to signal-to-noise-ratio or sensitivity to specific frequency 
bands may affect results, we included the MEG scanner type as a co
variate in our statistical models. 

During MEG data collection, all participants were asked to close their 
eyes and think of nothing specifically (eyes-closed resting-state condi
tion) for 10 min. MEG signals were recorded with a 0.1–330 Hz pass- 
band filter at 1 kHz sampling rate. Subjects’ head position inside the 
MEG helmet was continuously monitored using four head-tracking coils. 
The location of these coils and at least 400 head-surface points (on the 
nose, face, and scalp) with respect to anatomical fiducials were deter
mined with an electromagnetic tracker (Fastrak, Polhemus, Colchester, 
Vermont, USA). Simultaneous with the MEG signal acquisition, an 
electrooculogram (EOG) and electrocardiogram (ECG) were recorded. 

MRI was performed on a 3 T Achieva scanner (Philips Medical Sys
tems, Best, The Netherlands). The scanner protocol contained a 3D T1- 
weighted sequence (TR: 4.939 ms, FA 8◦, 230x230 mm2 FOV, 310 
sagittal slices; resulting in a 0.53 by 0.53 by 0.5 mm3 resolution) and a 
FLAIR (TR = 4800 ms, TE = 316 ms, TI = 1650 ms, 321 frames, field of 
view = 288 × 288 mm, slice thickness = 1.12 mm). 

The median delay between the MRI and MEG session across all 
subjects was 5 days with an interquartile range of 2–10 days. 

2.3. MEG processing 

MEG data were first preprocessed offline with the temporal extension 
of the signal space separation algorithm (MaxfilterTM, Elekta Oy, Hel
sinki, Finland, version 2.2 with default parameters) to subtract external 
interferences and correct for head movements (Taulu et al., 2005). 
Movement parameters were stored for later analysis. 

All data were then downsampled to 250 Hz, automatically coregis
tered with the subject’s T1 image using RHINO, OSL’s (https://github. 
com/OHBA-analysis) algorithm to coregister head shape points to the 
scalp extracted using FSL’s BETSURF and FLIRT (Jenkinson et al., 2002; 
Smith, 2002), and transformed in a common MNI152-space (Mazziotta 
et al., 1995). Data were filtered between 1 and 70 Hz with an additional 
notch filter (48–52 Hz). Additionally, we added a notch filter with center 
frequency at 16.6 Hz as we noticed a strong peak in spectral power at 
this frequency. This artefact is likely due to mechanical vibrations 
induced by construction works at the hospital site at the time of acqui
sition. After a visual check to remove artefactual time segments, an in
dependent component analysis (ICA) was run to exclude ocular and 
cardiac artefacts based on the correlation of the components’ time 
course with ECG and EOG. After filtering into the frequency band of 
interest (1–46 Hz), source reconstruction was performed using a linearly 
constrained minimum variance beamformer to an 8 mm cortical grid 
using a local spheres head model generated through FieldTrip (Oos
tenveld et al., 2011; Quinn et al., 2018; Woolrich et al., 2011). 

2.4. Parcellation 

Next, the cortex was parceled using a custom parcellation atlas 
consisting of 42 parcels: 38 parcels were based on an ICA of fMRI data 
from the Human Connectome Project, the remaining four parcels 
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correspond to the anterior and posterior precuneus and left and right 
intraparietal sulci as discussed before (Van Schependom et al., 2019; 
Vidaurre et al., 2018) . The parcellation atlas spanned the complete 
cortex and did not include subcortical areas. For each parcel, the first 
principal component (PC) of the different timeseries within that parcel 
was used as that parcel’s time series. 

2.5. Power spectral density 

For each parcel, the power spectral density was calculated using 
MATLAB’s standard pwelch function with a window length of 1024 
samples (4 s). Before entering statistical analyses, spectra were 
normalized by dividing through their L1-norm. For descriptive purposes, 
we define global spectral power as the averaged spectral power density 
across all parcels. 

2.6. MRI processing & segmentation 

The icobrain pipeline (version 3.1) segments a T1-weighted image 
into white matter, grey matter and cerebrospinal fluid. White matter 
FLAIR hyper-intensities are identified and included in the white matter 
segmentation. The main blocks of the icobrain pipeline have been 
described previously (Jain et al., 2015); in short, after skull stripping 
and bias correction, the T1 weighted image is segmented using a prob
abilistic image intensity model and non-rigidly propagated tissue priors 
from an MNI atlas (Mazziotta et al., 1995). Lesion segmentation is ob
tained by iterating the following loop until convergence: segmentation 
of the T1-weighted image, identification of intensity outliers on the 
FLAIR image and filling of the lesions on the T1-weighted image (Jain 
et al., 2015; Smeets et al., 2016) . T1 hypointensities, also called black 
holes, are also obtained as a sub-segmentation of the FLAIR lesions. 
Importantly, there is some debate on the sensitivity of 3D-T1 sequences 
in detecting T1 hypointensities. Typically, a 3D sequence detects more 
but less severe hypointensities (Lapucci et al., 2020). icobrain further 
refines the main tissue segmentation in order to obtain sub- 
segmentations of cortical grey matter and thalami (Cardoso et al., 
2013). Brain volumes (except for lesion load and black holes volume) 
are normalized for head size. In summary, the icobrain pipeline thus 
leads to the quantification of the whole brain white matter, deep and 
cortical grey matter, lesion load and black hole and thalamic volumes. 

2.7. Neuropsychological assessment 

At the day of the MEG assessment, all subjects underwent neuro
psychological testing. The neuropsychological tests included the Symbol 
Digit Modalities Test (SDMT), a test designed to capture information 
processing speed, the Dutch version of the California Verbal Learning 
Test (CVLT-II) to assess verbal memory, the Controlled Oral Word As
sociation Test (COWAT) to assess verbal fluency and the Brief Visuo
spatial Memory Test (Revised; BVMT-R) to assess spatial memory. More 
details can be found in (Costers et al., 2017; Van Schependom et al., 
2014) . Fatigue was assessed through the Fatigue Scale for Motor and 
Cognitive Functions (Penner et al., 2009). 

2.8. Uni- and multimodal analyses 

As different brain volumes can be expected to be strongly correlated, 
we performed a principal component analysis (PCA) on the MR derived 
whole brain volumes of the full cohort to allow the extraction of those 
components that explain most variance. This results in as many principal 
components as PCA input variables (in our case: 5), but with the 
advantage that we can limit the analysis to those components that 
explain a large portion of the variance instead of having to repeat the 
same analysis for different correlated variables. Finally, we correlated 
the spectral power with the PC weights obtained for each subject in 
order to assess the correlation between brain damage and oscillatory 

power. 

2.9. Statistics 

Covariations within and between modalities have been assessed 
through the Pearson correlation coefficient. All analyses have been 
performed within the general linear model and continuous covariates 
were first z-transformed before being included in the design matrix. All 
reported results have been corrected for age, gender, scanner and edu
cation by including them as covariates of no interest in the model design. 

All presented p-values were obtained by creating a null-distribution 
of the statistic of interest through 5000 permutations. For each permu
tation, each frequency bin and each parcel, we thus obtained a value of 
the t-statistic. Next, we calculated the threshold-free cluster enhance
ment (TFCE) across frequencies and created a null distribution of 
maximum TFCE values across parcels and frequency bins. Finally, the 
actual TFCE t-statistics were compared to this null distribution and all 
TFCE t-statistics above the 97.5th or below the 2.5th percentile were 
considered significant, equivalent with a cutoff p-value of 0.05. The use 
of TFCE allows us to assess whether specific frequency bands of interest 
emerge without us imposing traditional bands. Further it does not 
require the definition of a predefined threshold to detect clusters 
(SMITH & NICHOLS, 2009). For the multimodal analyses presented in 
this paper, we will report TFCE corrected p-values defined as the 
percentile within this null distribution. 

2.10. Ethics 

All subjects provided written informed consent and the study was 
approved by the local ethics committees of the University Hospital 
Brussels (Commissie Medische Ethiek UZ Brussel, B.U.N. 
143201423263, 2015/11) and the National MS Center Melsbroek 
(2015–02-12). 

3. Results 

3.1. Patient population 

We provide a detailed description of the included cohorts of MS 
patients and HSs and basic MRI and MEG results in Table 1. As expected, 
all MR-derived brain volumes significantly differ between the MS and 
HS population despite both populations being matched for age and 
gender with only a minor difference in education (p = 0.03, uncorrec
ted). No differences could be observed between the two cohorts for what 
concerns global MEG spectral power although upper alpha power shows 
a trend to be stronger in the HSs (p = 0.05, uncorrected). Finally, the MS 
cohort performs worse on all cognitive tests. 

3.2. Principal component analysis of MRI parameters 

In Fig. 1, we present the results of the PCA on the MR parameters 
across all subjects. The first PC explains about 55% of the variance and 
indicates a covarying pattern of smaller white and grey matter with 
larger volumes of white matter lesion volume and black holes. The 
second PC mainly picks up variations in cortical grey matter and ex
plains 19.2% of variance. Subsequent PCs explain at most 10% of the 
variance. 

As a PCA is only determined up to the sign, it is important to clarify 
the meaning. The first PC has negative weights in the HS population 
(mean: − 1.2) as compared to positive weights in the MS population 
(mean: 0.68). This essentially means that a strong negative weight of this 
component relates to more (C)GM, WM and a smaller lesion volume than 
the average subject. Similarly, the second PC correlates strongly with 
age (both across the full cohort as within the two subcohorts) and has 
positive weights in young healthy subjects and negative weights in older 
healthy subjects. This indicates that a higher score on PC2 relates to 
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more (cortical) grey matter and lower age than the average subject. 
Comparing the PC weights between both cohorts shows that only the 

first component significantly differs between MS and HSs (p = 1E-8.6). 
When repeating the PCA for both subcohorts independently, PC1 
emerges in both cohorts (see Figs. A1 and A2). 

3.3. Correlation between MRI parameters and cognitive impairment 

The first PC correlates with thalamic volume (r = -0.83, p < 0.001) 
and different cognitive tests: information processing speed (SDMT, r =
-0.44, p < 0.001), verbal learning and memory (CVLT-II, r = -0.42, p <
0.001) and spatial memory (BVMT-R, r = -0.31, p < 0.001). Similarly, 
thalamic volume correlates with SDMT (r = 0.39, p < 0.001), CVLT-II (r 
= 0.4, p < 0.001) and BVMT-R (r = 0.3, p < 0.001). The second PC 
correlates strongly with age (r = -0.53, p < 0.001), but not with any 
other clinical test. The remaining PCs are not significantly correlated 
with any clinical covariate. As ageing is not the focus of this paper, we 
only include PC1 in further analyses. All mentioned correlations are 
calculated across the full cohort. 

3.4. Multimodal structure–function correlations 

After correction across frequency bins and parcels, PC1 was shown to 
be negatively correlated with spectral power between 8 and 9 Hz in the 
temporoparietal junction (TPJ). Fig. 2 shows, on the left-hand side, the 
p-value of these negative correlations and on the right-hand side a 
scatter plot of PC-weights vs spectral power for both cohorts. Similarly, 
we show a negative correlation between thalamic volumes and spectral 
power in the same frequency with a similar spatial profile. 

As indicated in Fig. 2, the correlations between spectral power and 
PC1 are only significant in the MS cohort and not in the HS. The same 
goes for the correlation between alpha power and thalamic volume. This 
is likely caused by a broader range in PC1 weights and thalamic volumes 
in the MS patients. Correlations with individual MR parameters included 
in the PCA are shown in Fig. A3 (white matter volume, lesion load, and 
black holes). Correlations between spectral power and PC1 on a voxel- 
level (instead of the parcellation approach) are shown in Fig. A4. 

3.5. Increased lower alpha power in MS cohort with increased atrophy 
and lesion load 

In order to further investigate the correlation between higher levels 
of MS related neurodegeneration and stronger lower alpha power, we 
split the MS cohort on the median of the PC1 weights, creating a group 
with above average PC1 weights (ie above average brain atrophy and 
lesion load) and a group with below average PC1 weights (i.e. below 
average brain atrophy and lesion load). These MS subgroups did not 
differ on gender (p = 0.12, Chi2 test) nor on education, age or COWAT 
(p > 0.05), but did differ on SDMT (p = 0.002), CVLT-II (p < 0.001) and 
BVMT-R (p = 0.01) as expected from the previously presented correla
tions between PC1 and cognition. Further, we observed a significant 
increase in lower alpha power (p = 0.007) in the more affected group. 
This group also displayed higher EDSS scores (p = 0.02). We plot the 
spectra in the left TPJ in Fig. 3. 

Table 1 
Cohort characterisation. We report the mean values and standard deviations 
from the different clinical, structural and functional parameters for both the MS 
and healthy cohort. For EDSS the median and interquartile range (IQR) is shown. 
The comparisons were performed using permutation testing with N = 5000 for 
all parameters except gender and onset type for which a chi-squared test was 
used. All reported MRI based volumes have been normalized for head size.   

Healthy subjects 
(HS) 

MS 
patients 

HS vs 
MS 

N 46 66  – 
Gender (M/F) 18/28 28/38  0.71 
Age (yrs) 47 (12) 49 (10)  0.52 
Disease duration (yrs) – 16.5 (9)  – 
EDSS median [IQR] – 2.5 [2–3]  – 
Relapsing remitting vs 

secondary progressive 
– 62/4  – 

Education (Yrs) 15 (2) 14 (3)  0.03     

MRI    
White matter volume (ml) 640 (41) 607 (42)  <0.001 
Cortical grey matter volume (ml) 854 (55) 829 (46)  0.01 
Deep grey matter volume (ml) 44 (4.1) 40 (4.7)  <0.001 
Lesion load (ml) 1.9 (1.8) 9.6 (8.0)  <0.001 
Black holes (ml) 1.1 (1.2) 6.3 (5.6)  <0.001 
Thalamus (ml) 13.2 (1.2) 11.6 (1.4)  <0.001 
Global MEG spectral power    
Delta (1–4 Hz) 0.18 (0.03) 0.18 

(0.04)  
0.84 

Theta (4–8 Hz) 0.18 (0.03) 0.19 
(0.05)  

0.29 

Lower alpha (8–10 Hz) 0.14 (0.04) 0.015 
(0.05)  

0.13 

Upper alpha (10–12 Hz) 0.14 (0.04) 0.13 
(0.04)  

0.05 

Beta (12–30 Hz) 0.37 (0.06) 0.36 
(0.07)  

0.52 

Gamma (30–40 Hz) 0.04 (0.01) 0.04 
(0.01)  

0.99 

Cognitive test results   
Symbol Digit Modalities Test 54 (9.6) 48 (12)  0.009 
California Verbal Learning Test 

II 
65 (7.1) 61 (11.2)  0.029 

Controlled Oral Word 
Association Test 

11.1 (3.8) 8.8 (3.1)  0.001 

Brief Visuospatial Memory Test - 
Revised 

28.7 (5.3) 25.1 (6.9)  0.002  

Fig. 1. Principal component analysis of the MR 
derived brain volumes. Illustration of the two prin
cipal components revealed by the MR derived brain 
volumes from all subjects. PC1 is a linear combination 
that receives positive contributions from lesion and 
black hole volumes (red) and negative contributions 
from the white, deep and cortical grey matter (blue). 
PC2 is specific to cortical grey matter. (For interpre
tation of the references to colour in this figure legend, 
the reader is referred to the web version of this 
article.)   
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When splitting on the median of thalamic volume, the group with 
smaller thalamic volumes trended towards higher EDSS scores (p =
0.06) and worse SDMT (p = 0.06), performed significantly worse on 
CVLT-II (p = 0.009), but not on COWAT (p = 0.47) nor spatial memory 
(p = 0.45). A similar plot to Fig. 3 is obtained when splitting on thalamic 
volume. All reported p-values are obtained through permutation testing 
(N = 5000). 

3.6. Correlation between alpha power and cognitive functioning 

In order to simplify the comparison with the literature using, we will 
refer to our results in the 8–9 Hz band as “lower alpha band” as it is 
contained in the traditionally defined lower alpha band (see e.g. 
(Tewarie et al., 2013). Given the strong correlation between PC1 
weights and cognition on the one hand and the strong correlations be
tween PC1 weights and lower alpha power in the TPJ on the other, we 
also assessed the correlation between alpha power in the TPJ and 
cognition directly. Lower alpha power of the TPJ correlates with CVLT-II 
(r = -0.31, p < 0.001) and BVMT-R (r = -0.27, p = 0.002). There is no 
correlation between lower alpha power and SDMT or COWAT, but there 
is a correlation between SDMT and upper alpha power (r = 0.17, p =
0.048). Consequently, there is a significant correlation between the ratio 
of lower and upper alpha power and SDMT (r = -0.24, p = 0.005). All 
correlations were calculated on the full cohort. 

Fig. 2. Multimodal correlations. Left: -log10 of the p-value of the correlations between PC1 (upper panel) or Thalamic volume (lower panel) and MEG spectral power 
in the MS cohort after correction across parcels and frequency bins; the colour indicates the strength of significance and the sign the direction of the effect (+ =

positive, - = negative). Right: scatter plots between spectral power in the temporoparietal junction (TPJ) and PC1-weights (upper panel) or thalamic volume (lower 
panel) for both cohorts. The subtitles indicate for each cohort the Pearson correlation and its corresponding p-value. PSD = Power Spectral Density. 

Fig. 3. Relative spectral power in three groups in the temporoparietal junction: 
the MS cohort was split on the median of MS-related degeneration: the blue 
curve indicates MS patients with stronger brain atrophy and higher lesion load. 
The red curve those with less brain atrophy and lesion load and green is the PSD 
of the healthy subjects. The dip at 16.6 Hz results from the notch filter as 
explained in the methodology. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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3.7. Correlation between alpha peak frequency and cognitive functioning 

Finally, we determined the peak frequency and amplitude as the 
maximal frequency in the 7–14 Hz window. While we did not observe a 
difference between the two MS sub cohorts, we did observe a correlation 
between peak frequency of the TPJ with BVMT-R (r = 0.19, p = 0.03) 
and CVLT-II (r = 0.22, p = 0.01). 

4. Discussion 

In this paper we provide a novel multimodal analysis of how MS 
concurrently affects brain structure and functioning. First, we demon
strate that a large portion of intersubject variance in MR parameters can 
be explained by two principal components. Whereas the first PC picks up 
atrophy and lesion load, and is strongly correlated with cognitive out
comes, the second PC picks up variations mainly in the cortical grey 
matter and correlates strongly with age. 

Furthermore, we demonstrate a strong correlation between lower 
alpha power in the TPJ and brain atrophy and lesion load. Without a 
priori assumptions, our results justify the division of the traditional 
alpha band in a lower and upper alpha band although the lower alpha 
band (8–9 Hz) slightly differs from the traditional 8–10 Hz as used in 
different previous studies. A decrease in upper alpha and increase in 
lower alpha band was previously shown in MS patients (Van der Meer 
et al., 2013). Here we show that this relation is associated with brain 
atrophy and lesion load and that this relation is most strongly expressed 
in the TPJ. 

While our unimodal MRI analysis has some similarities with the PCA 
of cortical atrophy as presented by Steenwijk et al. (Steenwijk et al., 
2016), there are important differences. In this study, we performed a 
PCA on different brain volumes instead of cortical thickness patterns. 
This precludes us from discussing where precisely in the brain the at
rophy occurs but allows us to include different MR derived brain vol
umes in the PCA (e.g., lesion load, …) to capture different disease 
processes. As we are studying a patient population with an average 
disease duration of 16.5 years, most patients’ brains will be substantially 
affected by both demyelination and neurodegeneration and both aspects 
cannot be disentangled. 

The strongest correlation between measures of whole-brain damage 
and local oscillatory power is found in the TPJ. Interestingly, the TPJ is 
strongly connected to the thalamus (Kucyi et al., 2012), which in itself is 
one of the first regions affected by neurodegeneration in MS (Razvan 
et al., 2018, 2018) and its atrophy showed a similar correlation with 
lower alpha power in this cohort. Importantly, PC1 significantly corre
lated with cognitive tests assessing information processing speed (IPS), 
verbal and spatial learning abilities. 

The left TPJ contains the left angular gyrus (LAG) which has recently 
emerged as a major hub involved in different cognitive tasks (Seghier, 
2013) and is part of the default mode network (DMN). The importance 
of an intact DMN for information processing speed (IPS) is emphasized 
by (Savini et al., 2019) who reported a significant correlation between 
DMN global efficiency and IPS in relapsing onset MS patients. As the AG 
is involved in different cognitive tasks, an increase in lower alpha power 
could indicate an increase in inhibition and reduced cognitive abilities 
(Haegens et al., 2011). 

In order to understand this correlation better, we performed a post- 
hoc analysis and divided the MS cohort based on the median of the MS- 
specific structural damage. This analysis suggests that the increase in 
lower alpha power is induced by both a slowing of the alpha-peak fre
quency and an increase of the alpha-peak power. This corresponds to the 
reduced peak frequency in the TPJ in cognitively impaired MS patients 
as reported in (Schoonhoven et al., 2019). Of note, a reduced peak fre
quency has also been observed in Alzheimer’s disease (Goossens et al., 
2016). 

While we observe correlations between lower alpha power in the TPJ 
and tests of verbal and spatial memory, we do not observe the negative 

correlations between lower and upper alpha power and SDMT as 
observed in (Keune et al., 2017; Van der Meer et al., 2013). Yet there are 
also differences in study design: Keune et al used EEG and a combination 
of eyes closed and eyes open paradigms with a relatively coarse fre
quency resolution of 1 Hz (as compared to 0.25 Hz in this paper) and 
Van Der Meer et al used global relative power and a composite measure 
of different neuropsychological tests. 

The alpha peak frequency has been demonstrated to vary both within 
and across subjects with standard deviations being 0.9 and 2.8 Hz 
respectively (Haegens et al., 2014). The observed group-level difference 
in alpha peak frequency (1.5 Hz) is larger than the previously reported 
intrasubject variation (Haegens et al., 2014). Interestingly, Benwell and 
colleagues reported an increase in alpha power and slowing of the alpha 
peak frequency (at a rate of 0.2 Hz/hour) during a trial (Benwell et al., 
2019). An increase in alpha-power has previously been associated with 
decreases in sustained attention and increased fatigue (see e.g. (Cajo
chen et al., 1995). Yet, splitting the data on the median FSMC score - a 
measure of fatigue – did not reveal a difference in spectral power. 

It is important to bear in mind that this study did not make any as
sumptions on which frequency bin could be affected by MS and our 
results thus highlight the alpha band as the frequency band of interest. 
Future research should investigate whether alpha-power and peak fre
quency are consistently higher (resp. lower) in MS patients with 
impaired cognition or that their alpha-power and peak-frequency drift 
more during the recording. 

The main strength of this study is that we explored the relationship 
between structure and function without using predefined frequency 
bands. Yet, we still assume a specific frequency has the same function 
across subjects. As our results with individual MR parameters indicate, 
the individual contributions of MR damage to local changes in oscilla
tory power are difficult to disentangle, but the strongest correlations are 
observed between white matter or thalamic volume and alpha power, 
suggesting a disruption of the thalamocortical circuitry. Another 
important limitation of resting-state eyes closed is that the results may 
be affected by different cohorts being more likely to fall asleep. We 
consider this unlikely to affect our results as falling asleep would induce 
an increase in theta power and decrease in alpha power, which was not 
observed. Furthermore, we redid the analysis including only the first 
two minutes of data and observed similar results. 

5. Conclusion 

Multiple sclerosis is characterized by brain atrophy and lesion load. 
Yet how this structural damage leads to neurophysiological changes is 
only poorly understood. In this article, we characterized this structur
e–function relationship as a first step towards understanding how 
structural damage affects functioning. We demonstrated that MS pa
tients with more brain atrophy and a higher lesion load displayed 
increased lower alpha power in the TPJ and impaired cognitive func
tioning and that this increase may be due to a slowing of the alpha peak 
frequency. 
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