
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21771  | https://doi.org/10.1038/s41598-022-26204-z

www.nature.com/scientificreports

Radial diffusivity reflects general 
decline rather than specific 
cognitive deterioration in multiple 
sclerosis
Johan Baijot  1*, Delphine Van Laethem 1,2, Stijn Denissen 1,3, Lars Costers 1,3, 
Melissa Cambron 4,5, Miguel D’Haeseleer 4,6, Marie B. D’hooghe 4,6, Anne‑Marie Vanbinst 7, 
Johan De Mey 7, Guy Nagels 1,3,4,8,10 & Jeroen Van Schependom 1,7,9,10

Advanced structural brain imaging techniques, such as diffusion tensor imaging (DTI), have been used 
to study the relationship between DTI-parameters and cognitive scores in multiple sclerosis (MS). In 
this study, we assessed cognitive function in 61 individuals with MS and a control group of 35 healthy 
individuals with the Symbol Digit Modalities Test, the California Verbal Learning Test-II, the Brief 
Visuospatial Memory Test-Revised, the Controlled Oral Word Association Test, and Stroop-test. We 
also acquired diffusion-weighted images (b = 1000; 32 directions), which were processed to obtain the 
following DTI scalars: fractional anisotropy, mean, axial, and radial diffusivity. The relation between 
DTI scalars and cognitive parameters was assessed through permutations. Although fractional 
anisotropy and axial diffusivity did not correlate with any of the cognitive tests, mean and radial 
diffusivity were negatively correlated with all of these tests. However, this effect was not specific 
to any specific white matter tract or cognitive test and demonstrated a general effect with only low 
to moderate individual voxel-based correlations of <0.6. Similarly, lesion and white matter volume 
show a general effect with medium to high voxel-based correlations of 0.5-0.8. In conclusion, radial 
diffusivity is strongly related to cognitive impairment in MS. However, the strong associations of radial 
diffusivity with both cognition and whole brain lesion volume suggest that it is a surrogate marker for 
general decline in MS, rather than a marker for specific cognitive functions.

Multiple sclerosis (MS) is the most common inflammatory, demyelinating, and neurodegenerative disease of 
the central nervous system in young adults1. Between 40 and 70% of the persons with multiple sclerosis (PwMS) 
suffer from cognitive impairment2,3, which has a detrimental effect on quality of life4 and coping mechanisms5, 
and cannot be accurately predicted by disease duration6.

Assessing cognitive impairment is difficult and time-consuming. At the same time, it is subject to learn-
ing effects, test–retest variability, and interrater variability. MR imaging has been explored to provide more 
objective and reliable biomarkers of the patient’s cognitive functioning3,7. Yet, correlations between cognitive 
test results and brain volume loss or lesion volume are weak (0.2–0.4)8. Additionally, atrophy as seen on MRI 
indicates substantial neuronal cell death, which means that the window of opportunity to prevent neuronal loss 
has passed. Therefore, alternative markers of cognition are being investigated. One option is to look at how the 
brain functions using electro- or magnetoencephalography or functional MR imaging. While promising results 
have been achieved9,10, we recently provided indirect evidence that the analysis of fMRI networks may be affected 
by vascular changes11.

Another option is to assess the brain’s microstructural integrity through diffusion-weighted imaging (DWI). 
By modelling the diffusion of water molecules along white matter fibre bundles through diffusion tensor imaging 
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(DTI), several measures are calculated for each voxel. The parameters most assessed are Fractional Anisotropy 
(FA) and Mean Diffusivity (MD). A recent systematic review12 concluded that information processing speed 
(IPS) is correlated with DTI measures of several white matter bundles, mainly in the corpus callosum. However, 
many studies used the Paced Auditory Serial Addition Test (PASAT) to measure IPS. Because PASAT is poorly 
tolerated and the Symbol Digit Modalities Test (SDMT) is easier to administer, SDMT has replaced PASAT as 
the most commonly used cognitive task to assess IPS in the past decade3.

Comparing brain microstructure between subjects poses two problems: dealing with spatial anatomical vari-
ability and correcting for multiple comparisons. The field has evolved from lowering the significance threshold in 
voxel based analysis13 according to multiple comparisons methods, such as Bonferroni14, to cluster-based analysis 
with set thresholds15 and finally threshold-free methods, such as threshold-free cluster enhancement (TFCE)16. 
A recent review article by Manca et al.12 analysed brain processing speed in relation to DTI states. The authors 
showed that past literature presented a high variability because various older multiple comparisons approaches 
were used and thus results were inconclusive, creating a need for further research of the DTI parameters within 
MS. Other studies using TFCE17,18 had small sample sizes and limited scope by using only one DTI parameter 
or cognitive test. Meijer et al.18 did not experience these limitations but only investigated a dichotomization of 
the cognitive status (i.e., cognition impaired versus preserved), instead of studying separate cognitive domains.

In this study, we revisit the hypothesis that DTI parameters are correlated with cognition. Furthermore, by 
including cognitive tests that evaluate the most affected cognitive domains in MS, we will assess whether changes 
in DTI parameters are specific to certain cognitive domains. We perform a group analysis comparing the DTI 
parameters of 61 PwMS with 35 healthy subjects (HS), using tract-based spatial statistics (TBSS)19,20. Second, we 
assess each cognitive domain and its relation to the DTI parameters in our complete study sample throughout 
the whole brain, by combining the advantages of applying a TFCE as a cluster-based analysis and a voxel-based 
analysis, similar to Bernabéu-Sanz 202121.

Results
Demographics, clinical, and neuropsychological data.  Our study included 61 PwMS and 35 HS. The 
characteristics of each group are presented in Table 1. Age and sex were similar in both groups, but there was a 
statistically significant difference in terms of education level, fatigue, and depression. While both groups per-
formed similarly on verbal and visual memory tests and the combined test for processing speed and attention, 
PwMS scored significantly lower on tests for processing speed, verbal fluency, and hand motricity.

Analysis of diffusion tensor parameters: group differences.  In a first analysis, we compared the 
diffusion tensor parameters of the PwMS group to those of the HS group; the results are illustrated in Fig. 1. 
PwMS showed a general decrease in fractional anisotropy (FA), across the whole white matter and an increase in 
mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) in all regions. The results of the cluster 
analysis of the permutation testing are presented in Table 2. Only one large cluster was found for each of the 
diffusion tensor parameters.

Correlation of diffusion tensor parameters with cognitive scores.  In a second analysis, we assessed 
the relation between the diffusion tensor and neuropsychological parameters. First, we identified clusters that 
were significantly correlated with the different cognitive tests through TBSS and TFCE. The visualisation of 
these intermediate results is available in an online repository (https://​neuro​vault.​org/​colle​ctions/​LYEGO​WBT/) 
aligned to the MNI-space in Neuroimaging Informatics Technology Initiative (NIfTI) format. In the next 

Table 1.   Demographics and neuropsychological scores of the PwMS and HS group. p values were derived 
from two-sample t-tests, and from a Chi-square test for the variable sex. M mean, SD standard deviation, IQR 
interquartile range, y years.

PwMS (n = 61) HS (n = 35) p value

Age in years (M ± SD) 47.5 (± 9.7) 48.4 (± 11.7) 0.68

Sex (Men/Women) 27/34 18/17 0.50

Education level in y (M ± SD) 14.2 (± 2.5) 15.4 (± 2.1) 0.02

Beck’s Depression Inventory (M ± SD) 11.4 (± 7.5) 5.8 (± 5.6) 0.0003

Fatigue Scale for Motor and Cognitive Functions (M ± SD) 63.9 (± 17.1) 33.9 (± 10.3)  < 0.0001

EDSS (Med [IQR]) 3 [2–4]

NHPT in peg/second (M ± SD) 0.41 (± 0.08) 0.45 (± 0.05) 0.0011

Disease duration in y (M ± SD) 15.4 (± 8.4)

Cognitive evaluation

SDMT (M ± SD) 48.6 (± 11.2) 54.8 (± 9.5) 0.0075

CVLT (M ± SD) 62.9 (± 10.6) 66.0 (± 7.2) 0.12

BVMT (M ± SD) 25.6 (± 7.3) 28.4 (± 5.6) 0.053

COWAT (M ± SD) 31.5 (± 9.2) 36.8 (± 8.4) 0.0085

Stroop (M ± SD) 40.7 (± 24.2) 32.4 (± 17.0) 0.10

https://neurovault.org/collections/LYEGOWBT/


3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21771  | https://doi.org/10.1038/s41598-022-26204-z

www.nature.com/scientificreports/

step, the correlations between DTI parameters of the voxels within these clusters and the different cognitive 
parameters were assessed using the significant clusters as mask for the calculations, which is shown in Fig. 2. 
Finally, these correlations were evaluated using a white matter bundle atlas. There were no significant correla-
tions between FA and AD and any of the assessed variables. MD and RD were correlated with the Symbol Digit 
Modalities Test (SDMT), California Verbal Learning Test-II (CVLT), Brief Visuospatial Memory Test-Revised 
(BVMT), and the Controlled Oral Word Association Test (COWAT) but only the SDMT correlation passed the 
correction for multiple comparisons. The strongest correlation for each white matter bundle is listed in Table 3.

Correlation of diffusion tensor parameters with volumetric parameters and EDSS.  Combin-
ing all T2 FLAIR hyperintensity lesion maps, we created a heat map to indicate the probability that a lesion was 
detected in a certain location in our dataset (see Fig. 3).

Furthermore, we assessed the association between tensor parameters and lesions volume, WM volume and 
EDSS. The intermediate results are provided in the online repository: https://​neuro​vault.​org/​colle​ctions/​LYEGO​

Figure 1.   Tract-based spatial statistics nonparametric permutation inference results of comparing the diffusion 
tensor parameters of PwMS and HS. For better visualisation purposes the results are projected on top of a 
standard MNI image, with the assessed IIT-FA-skeleton shown in green and the significant outcomes thickened. 
Regions in red and blue respectively indicate a significant decrease or increase of the diffusion tensor parameter 
in PwMS compared to HS. For better visualization, the data can be visualized in 3D in the repository: https://​
neuro​vault.​org/​colle​ctions/​LYEGO​WBT/.

Table 2.   Parameters of the analysis of clusters of the permutation testing for each diffusion tensor parameter. 
The parameters of the clusters listed are volume in mm3 and in % compared to the total WM tracts volume (of 
110,750 mm3), mean p value and min p value.

Volume Mean p value Min p value

RD 43,606 mm3 39.4% 0.0072  < 0.001

FA 39,257 mm3 35.4% 0.008  < 0.001

MD 37,397 mm3 33.8% 0.0081  < 0.001

AD 21,999 mm3 19.9% 0.007  < 0.001

https://neurovault.org/collections/LYEGOWBT/
https://neurovault.org/collections/LYEGOWBT/
https://neurovault.org/collections/LYEGOWBT/
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Figure 2.   Distribution of r-values from the voxel-wise Pearson correlations between the diffusion tensor 
parameters and neuropsychological z-scores, for the significant voxels of the TFCE analysis. Results using the 
cut-off of 0.001 are shown in green and the corresponding volume is indicated with **. In blue we also show the 
results of cut-off 0.05 and its corresponding volume.

Table 3.   Strongest observed correlations between the diffusion tensor parameters and neuropsychological 
z-scores for each bundle of the IIT white matter bundle atlas. Bundles presenting no significant correlations 
are indicated with a backslash, and a red (negative) and green (positive) colour palette is used to ease visual 
interpretation of the r-values strength and direction. The r column represents the strength of the correlation 
and the − LOG(p) shows the significance on the inverse logarithmic scale (the cut-off p value of 0.001 is 
− LOG10(p) = 3). The volume of the shared region between the considered cluster and the tracks is shown 
in mm3. MD mean diffusivity, RD radial diffusivity, BVMT brief visuospatial memory test-revised, COWAT​ 
controlled oral word association test, SDMT symbol digit modalities test, CVLT California verbal learning 
test-II.
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WBT/. The voxel-based correlations between lesions, WM volume, and EDSS and DTI parameters within these 
significant TFCE clusters are shown in Fig. 4. The strongest correlations for each white matter bundle from the 
IIT atlas are listed in Table 4. We found that only FA was significantly related to the white matter volume, while 
AD, MD, and RD were significantly associated with lesion volume. Also, MD and RD were significantly associated 
with the EDSS, but the correlations with MD did not pass correction for multiple comparisons.

Discussion
In this paper, we compared DTI parameters between MS and HS and observed a significant decrease in FA 
in PwMS. This likely reflects a decrease in microstructural integrity22,23. Furthermore, there was an increase 
in AD and RD in PwMS compared to HS. These parameters have been related to demyelination in ex vivo24 
and mouse studies25,26. Since MD can be expressed as a linear combination of RD and AD23, it is linked to the 
same biophysical properties and therefore also increased in PwMS. The associations between AD and RD and 
biophysical properties have been questioned as generalizations, in part because these parameters can be altered 
in pathological brain tissue without reflecting the organization of the underlying tissue. Numerical simulations 
of the DTI parameters with crossing fibres associated an increase in AD and RD with demyelination27. With 
axonal degeneration, we expect FA and AD to decrease while RD increases; with demyelination we expect FA to 
decrease, AD to be unaffected and RD to increase28. Despite the need for a careful interpretation, our findings 
indicate a clear pathology-induced alteration of the brain structure in PwMS compared to the HS. We observed 
a correspondence between the MS lesions map (available in Fig. 3) and regions showing significant group dif-
ferences of the DTI parameters.

In a second step, we looked at our main research question, the relation between DTI-parameters and cognitive 
scores. On this subject, the literature was highly variable and inconclusive12. Bernabéu-Sanz 202121 indicated 
thalamic atrophy as the main source of cognitive impairment in general and found associations between abnor-
malities in the occipital projection fibers of the corpus callosum and the SDMT in mildly disabled patients with 
relapsing–remitting multiple sclerosis (RRMS). Riccitelli 201929 also studied RRMS and associated the PASAT 
and SDMT with widespread abnormalities in DTI in several regions, but the strength of these associations was 
not reported. Similarly, studies that compared cognitively impaired and cognitively preserved persons with MS 
(Meijer18 and Zhao30) or studies assessing a specific brain area (i.e., the thalamus in Benedict31 and corpus cal-
losum in Sun32) have reported similar results. However, the question arises as to whether these associations are 
specific to information processing speed or reflect a more general (cognitive) decline.

We observed that MD and RD were correlated with the SDMT. Furthermore, the TBSS analysis showed one 
large significant cluster when correlations were found. This is in correspondence with Riccitelli et al.29, who 
found correlations between SDMT and MD in all bundles, except for the right cingulum, right fornix, and left 
posterior thalamic radiata. The association of SDMT with numerous pathways is not surprising. A functional MRI 
independent component analysis of an SDMT task has found that information processing speed is related to the 
visual network, cerebellum network, motor network, auditory network, visuospatial processing and reasoning 
network, and the default mode network33. At the voxel-level, we found low to medium correlations, below 0.6, 
between the DTI parameters and cognitive tests in the PwMS and HS group. The corpus callosum consistently 
shows the greatest overlap and a high correlation with cognition compared to the other tracts. Damage to the 
callosal tracts leads to dissociation of the connections between the hemispheres and has been associated with 

Figure 3.   Map of the likelihood of lesions (FLAIR hyperintensities) in the MS group (in percentage).

https://neurovault.org/collections/LYEGOWBT/
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cognitive impairment in MS, as reported in functional connectivity studies34,35. Furthermore, diffusion tensor 
parameters in the corpus callosum have been consistently associated with processing speed12,32.

We did not observe any association between FA/AD and the different cognitive tests assessed through non-
parametric permutation on the TBSS tracts. This is in line with previous studies, which reported weak12,30 or 
absent12,32 correlations. Other studies only found correlations with the PASAT12, but this test only has moderate 
sensitivity to cognitive deficits and has been replaced by the SDMT in clinical practice3. Some studies found 
correlations with other cognitive tests, but only in the corpus callosum30,32. Finally, a decreased FA has been 
observed in cognitively impaired PwMS compared to those with intact cognition18.

Based on functional connectivity studies, our expectation was that the different cognitive tests would show 
more distinctive correlation patterns with MD/RD, instead of a rather homogeneous correlation strength. SDMT, 
for instance, measures information processing speed and is linked to several brain regions (Silva et al.36 found 
19 pairs of cortical regions in relation to the information processing network), while the CVLT measures verbal 
memory, which is predominantly associated with the left medial temporal lobe, the right hippocampus, and right 
frontal lobe on fMRI37. This discrepancy between our expected and observed findings could mean that MD/RD 
are markers of more general damage in MS, rather than specific markers of cognitive deterioration.

We examined the association of whole brain lesion volume and white matter volume with the tensor-based 
parameters. In this analysis much stronger correlations, with r values between 0.45 and 0.83, were observed for 
all bundles. Additionally, the brain regions that show significant correlations between MD, RD, AD and lesion 
volume are larger than the regions that showed significant correlations between MD, RD and all the cognitive 
tests. Considering that RD and MD show similar correlation patterns with cognitive tests, white matter, lesion 
volume, and EDSS scores, we suggest that MD and RD are plausible surrogate markers for the general decline 
of brain performance due to MS rather than specific markers for cognitive decline. Since AD was not correlated 
with any of the neuropsychological tests, the correlation between MD and the different cognitive tests seems to 
be driven by RD27. As such, RD appears to be of particular interest in assessing cognitive impairment in multiple 
sclerosis.

Several limitations must be considered: The two groups were matched for age and sex, but not for education 
level. Despite their lower education level, which is usually associated with a lower cognitive score38, the PwMS 
group did not perform significantly worse on 3 of the 6 cognitive tests (CVLT, BVMT, and Stroop). Repeating 
the analysis with a slightly smaller cohort of MS patients that was matched for education (p > 0.10) did not affect 
our results. All PwMS were recruited either in an academic hospital (UZ Brussel) or a reference centre (National 

Figure 4.   Distribution of r-values from the voxel-wise Pearson correlations between the diffusion tensor 
parameters and volumetric parameters and EDSS, for the significant voxels of the TFCE analysis. Results using 
the cut-off of 0.001 are shown in green and the corresponding volume is indicated with **. In blue we also show 
the results of cut-off 0.05 and its corresponding volume.
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MS Center of Melsbroek), where they regularly undergo cognitive testing, either for clinical evaluation or in the 
context of research. This could have resulted in a learning effect due to repeated test exposure7. This learning 
effect will decrease the sensitivity of our analysis. Additionally, our study has a cross-sectional design. A longi-
tudinal study design on cognitive deterioration in MS could provide more insight into the associations between 
cognition and structural connectivity measures. Furthermore, medication and MS type were not considered in 
this study. Since we used a cross-sectional design, and therefore only looked at a fixed situation and not to the 
evolution, it could be neglected. For a longitudinal study, these aspects however cannot be neglected. Moreover, 
there are limitations inherent to the methods used for image processing and analysis: First, TBSS was designed 
to circumvent the partial volume effect, but the registration and projection of all subjects to one skeleton remains 
a critical step, where atrophy and lesions will inevitably worsen the sensitivity to construct the tract in PwMS19. 
As the projection depends on the morphology, any surrounding lesions or atrophy can introduce voxel misas-
signment. Second, the TFCE method includes a spatial smoothing before demonstrating the significance of 
clusters. Thus not guaranteeing the correlations of any voxel within the cluster. However, this should reduce false 
negative results on a voxel level. Finally, we used the maximum correlation as an approximation of the relative 
importance of the cluster. However, this intrinsically introduces a bias, namely, to potentially overestimate the 
importance of the cluster.

In conclusion, RD is generally considered a robust marker of demyelination and is strongly correlated with 
cognitive markers. Our results indicate that correlations with cognitive impairment are not limited to specific 
tracts, but rather affect all the white matter. Furthermore, these correlations are not specific to distinct cognitive 
domains but rather reflect the overall damage to the central nervous system caused by MS.

Methods
Compliance with ethical standards.  Ethical approval was provided by the ethical committee: “commis-
sie medische ethiek van MS Center Melsbroek” on 12 February 2015 and by the “medical ethics committee UZ 
BRUSSEL—VUB” on 25 February 2015 (B.U.N. 143201423263). Data analysis was carried out according to these 
study protocols and following the applicable local regulations. Written informed consent was obtained from all 
participants prior to inclusion.

Table 4.   Strongest observed correlation in the PwMS group between diffusion tensor parameters and 
volumetric parameters and EDSS for each bundle of the IIT white matter bundle atlas. Bundles without 
any significant correlations are indicated with a backslash and a red (negative) and green (positive) colour 
palette is used to facilitate visual interpretation of the R values. The r column represents the strength of the 
correlation and − LOG(p) shows the significance on the inverse logarithmic scale (cut-off p value of 0.001 is 
− LOG10(p) = 3). The volume of the shared region between the considered cluster and the tracks is shown 
in mm3. MD mean diffusivity, RD radial diffusivity, BVMT brief visuospatial memory test-revised, COWAT​ 
controlled oral word association test, SDMT symbol digit modalities test, CVLT California verbal learning 
test-II.
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Data collection.  The PwMS were recruited from the National MS Center of Melsbroek and the Universitair 
Ziekenhuis Brussel—VUB and the HS were recruited from hospital staff and acquaintances of the PwMS. All 
study participants were between 18 and 65 years old and were able to undergo MRI (absence of contraindica-
tions, eg pacemaker, prosthesis). Only patients with a diagnosis of definite MS according to the revised McDon-
ald criteria39 and an Expanded Disability Status Scale score40 (EDSS) below 6.0 were included. HS were excluded 
if they suffered from any neurological condition or if they had first-degree relatives with MS.

In a timeframe of maximum 3 days, two testing sessions were organised, one to obtain demographical and 
clinical data as well as cognitive and other testing results and one to acquire a sequence of MR images. The 
demographical and clinical data included age, sex, education level and disease duration. Neuropsychological 
testing included the Brief international cognitive assessment for MS (BICAMS) test battery41,42 which consist of 
the Symbol Digit Modalities Test (SDMT, information processing speed)41, California Verbal Learning Test-II 
(CVLT, verbal memory and learning)41, and the Brief Visuospatial Memory Test-Revised (BVMT, visual memory 
and learning)41. The Controlled Oral Word Association Test (COWAT, verbal fluency)43 and the Stroop-test 
(Stroop, processing speed and attention)44 were also carried out. The cognitive scores were z-transformed for 
future analysis using the HS group as a reference. This allowed us to correct for age, education level and sex of 
the subjects, we refer to Costers et al.42 for more details.

MRI acquisition.  All scans were carried out at UZ Brussel on a 3T Philips Achieva scanner. The sagittal T1 
weighted brain MRIs were acquired with the following parameters: field of view: 240 mm × 240 mm, 310 slices, 
voxel size: 0.5 mm × 0.5 mm × 0.5 mm, flip angle: 8°, repetition time (TR): 5.19 ms, echo time (TE): 2.30 ms. The 
FLAIR sequence was acquired with the following parameters: field of view: 240 mm × 240 mm, 320 slices, in-
plane resolution: 1.0417 mm × 1.0417 mm, slice thickness: 1.12 mm, 0.56 mm space between slices, TR: 1650 ms, 
TE: 307 ms.

Diffusion-weighted images were acquired on the same scanner in the same session with 32 volumes with a 
non-collinear diffusion gradient and a b-value of 1000 s/mm2, one volume with b-value 0 s/mm2 (B0) and one 
volume with reverse-phase encoding. These images were acquired with the following parameters: in-plane field 
of view: 250 mm × 250 mm, 70 slices, in-plane resolution: 0.975 mm × 0.975 mm, slice thickness: 2 mm, TR: 
5133 ms, TE: 95 ms.

Image processing.  MRtrix345 and FSL46–48 software packages were used for processing and MATLAB 
2019a was used for further statistical analysis. The diffusion-weighted images (DWI) were denoised49 and the 
Gibbs-ringing effect50 was removed before estimating the susceptibility-induced field, based on the B0 and 
reverse phase-encoded image51. Correction for eddy currents52 and movement in the diffusion data was carried 
out using outlier replacement53 (using 3 standard deviations as a threshold due to the low number of acquired 
directions), the slice-to-volume motion correction54 (with 8 iterations and a degree of freedom of 8) and sus-
ceptibility-by-movement correction55. We performed bias field correction through the N4 BiasFieldCorrection 
algorithm from the advanced normalization tools (ANTs) toolkit56. This algorithm is an improved variation of 
the nonparametric nonuniform normalization retrospective bias correction algorithm. From these images, the 
diffusion tensor was estimated using the weighted linear least-squares estimation57. Different maps of the follow-
ing tensor-derived parameters were created: fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity 
(AD) and radial diffusivity (RD). MD is related to AD and RD through the following formula:

We then applied tract-based spatial statistics (TBSS)20 and aligned all images to the FMRIN58_FA standard-
space58 image. Subject FA-images were skeletonised using the IIT Human Brain Atlas (v.5.0)59 templates (IIT-FA-
skeleton) and the IIT variation of the TBSS-script. A template rather than a study derived skeleton was chosen due 
to the concerns about pathological influences on the projection to the skeleton19. These concerns cannot entirely 
be eliminated but are limited to a subject-level rather than the group-level. For the non-FA parameters, we reused 
the non-linear registration from the FA-images to the skeletonised map with the IIT version of the TBSS script.

The lesion maps, the volume of lesions and the volume of white matter (WM) were obtained using the 
icobrain 3.1 software, previously known as MSmetrix60. The lesion maps and the diffusion tensor maps were 
transformed into the MNI space with the ANTS registration toolbox61 and using the 2 mm standard template 
available in FSL as reference58.

Statistical analysis.  In a first analysis, we looked at the differences between PwMS and HS by performing 
a nonparametric permutation, using the FSL randomise tool62 with 2000 permutations and the Threshold-Free 
Cluster Enhancement (TFCE) option, which generates results that are corrected for multiple comparisons across 
space. A threshold of 0.05 for statistical significance was used for the corrected p-value. This resulted in a binary 
3D image indicating the spatial regions in which the tensor parameters are significantly different between PwMS 
and HS.

In a second analysis, we assessed possible associations between tensor parameters and neuropsychological 
tests and the association between tensor parameters and the lesion and WM volume. We used a general linear 
model: the neuropsychological test z-scores were used as weights in the design matrix of TBSS and similarly to 
the first analysis, we obtained the significant clusters with TFCE and used a threshold for the corrected p-values 
of 0.05, which we further lowered to 0.001 to account for the multiple comparisons (as each tensor parameter 
was compared to six parameters).

MD =
1

3
AD +

2

3
RD
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However, the cluster enhancement technique gains spatial specificity at the cost of losing all the information 
about the cluster strength. For this reason, we added a cluster analysis and used a voxel-wise analysis within the 
found clusters to gain information about the strength of these clusters. Associations between neuropsychological 
test z-scores and the values of the skeletonized tensor parameters were assessed through Pearson’s correlations 
in each voxel of the clusters.

As the last step of the second analysis, we used an atlas of white matter bundles, the IIT Human Brain Atlas 
(v.5.0)59, and retained the strongest correlation (highest r-value) with a p-value lower than 0.001 (to compensate 
for multiple comparisons) for each bundle in the atlas. The second analysis was carried out for HS and PwMS 
together, as we assumed that the correlation effect is independent of the presence of disease. Furthermore, by 
including both HS and PwMS, we can assess the correlation between DTI measures and cognition in a sample 
with a wide range of cognitive performances. The analysis was performed for only the PwMS as well but will 
only be included in the repository (https://​neuro​vault.​org/​colle​ctions/​LYEGO​WBT/) and will not be discussed 
in this manuscript.

Permission to reproduce material from other sources.  All illustrations are derived from the data 
used in this paper and were created only for this manuscript with the FSLeyes toolbox or in MATLAB (2021). 
No material was copied from another source.

Data availability
Public sharing of the data used in this manuscript is not possible due to privacy and ethical restrictions. The data 
that support the findings of this study are available on request to the corresponding author.
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