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INTRODUC TION

Cognitive impairment is a frequent symptom of multiple sclerosis 
(MS), affecting 34% to 65% of adult patients [1]. While multiple cog-
nitive domains can be affected (e.g., attention, working, and verbal 
memory), information processing speed (IPS) is the first and most 
commonly affected cognitive domain [2]. A slowed IPS reduces the 
quality of life and participation in daily life [1, 3]. Neuropsychological 

tests for detecting cognitive dysfunction in MS exist but are time-
consuming. Their results may be confounded by concomitant mood 
disorders, medication use, cognitive reserve, cultural differences, 
education, learning effect, and fatigue [1, 3]. Therefore, we need 
more objective markers that capture cognitive evolution and pick up 
treatment effects.

Currently, an objective, reproducible, and operator-independent 
estimator of cognitive impairment in MS is lacking. This hinders 
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Abstract
Objective: Cognitive impairment is common in multiple sclerosis (MS), significantly im-
pacts daily functioning, is time-consuming to assess, and is prone to practice effects. 
We examined whether the alpha band power measured with magnetoencephalography 
(MEG) is associated with the different cognitive domains affected by MS.
Methods: Sixty-eight MS patients and 47 healthy controls underwent MEG, T1- and 
FLAIR-weighted magnetic resonance imaging (MRI), and neuropsychological testing. 
Alpha power in the occipital cortex was quantified in the alpha1 (8–10 Hz) and alpha2 
(10–12 Hz) bands. Next, we performed best subset regression to assess the added value 
of neurophysiological measures to commonly available MRI measures.
Results: Alpha2 power significantly correlated with information processing speed 
(p < 0.001) and was always retained in all multilinear models, whereas thalamic volume 
was retained in 80% of all models. Alpha1 power was correlated with visual memory 
(p < 0.001) but only retained in 38% of all models.
Conclusions: Alpha2 (10–12 Hz) power in rest is associated with IPS, independent of 
standard MRI parameters. This study stresses that a multimodal assessment, including 
structural and functional biomarkers, is likely required to characterize cognitive impair-
ment in MS. Resting-state neurophysiology is thus a promising tool to understand and 
follow up changes in IPS.

K E Y W O R D S
alpha power, cognition, magnetoencephalography, multiple sclerosis, neurophysiology

www.wileyonlinelibrary.com/journal/ene
https://orcid.org/0000-0002-8641-054X
https://orcid.org/0000-0003-2668-8061
https://orcid.org/0000-0002-0917-4176
https://orcid.org/0000-0003-4378-0089
https://orcid.org/0000-0002-2597-0383
mailto:
https://orcid.org/0000-0003-1200-5872
mailto:jeroen.van.schependom@vub.be


2  |     DE COCK et al.

diagnosis, research, and treatment. Some correlations between 
cognition in MS and magnetic resonance imaging (MRI) structural 
brain parameters have been found. Whereas atrophy measures have 
elucidated early thalamic involvement in the pathophysiology, the 
correlations with cognitive scores are generally weak (correlation 
r = −0.3 between T2 lesion load and cognition) [4]. This is commonly 
described as the clinical–radiological paradox. [4, 5]. Functional 
MRI (fMRI) has also been employed in the search for a biomarker 
of cognitive impairment in MS. Yet, fMRI findings may be affected 
by reduced blood flow rather than reduced or reorganized neuronal 
activity, as hypothesized by Baijot et al. [6]. Both magnetoencepha-
lography (MEG) and electroencephalography (EEG) provide a more 
direct measurement of neuronal activity and have – at the cost of 
a lower spatial resolution – a higher temporal resolution compared 
to fMRI, with MEG having a superior spatial resolution over EEG 
[7–10].

The peak alpha frequency measured by EEG and MEG is re-
producible within subjects and can show individual differences in 
brain functioning [11, 12]. In standard conditions, the alpha peak 
frequency is individually determined, is independent of cognitive 
training, and functions as a reproducible marker for neurophysio-
logical cognitive reserve [11, 13, 14]. In healthy subjects, the alpha 
band spectral power (8–12 Hz) during wake resting state correlates 
with cognitive performance [11, 12]. However, in several neurolog-
ical illnesses such as Alzheimer's dementia, vascular dementia, and 
dementia with Lewy bodies, frequency power shifts are correlated 
with disease progression and may even be used to differentiate be-
tween conditions [11, 13, 15–22]. It stands to reason, therefore, that 
different pathophysiological conditions may be associated with spe-
cific neurophysiological changes.

In MS, we expect an association between cognitive scores and 
alpha power as production and modulation of alpha oscillations are 
heavily influenced by the thalamus, a structure known to be affected 
early in the disease course, and the atrophy of which is correlated 
with cognitive impairment in MS patients [23–25]. Alpha output is 
hypothesized to result from feed-forward mechanisms (from the 
thalamic alpha pacemaker and to a lesser extent from other alpha 
sources originating from the cortex), cortical–thalamocortical pro-
jections, and intracortical circuits [26]. Disrupted thalamocortical 
circuits cause deficits of higher order functioning, attentional defi-
cits, loss of vigilance, and/or decreased processing speed [25, 27, 
28]. Within the MS population, thalamic atrophy due to focal demy-
elination or from degeneration of thalamic nuclei secondary to dis-
ruption of thalamocortical circuits is associated with disease activity, 
reduced IPS, the transition from a clinically isolated syndrome (CIS) 
to definite MS, and with cognitive impairment in MS [25, 27, 29–31].

Both alpha power and thalamic volume correlate with MS pa-
tients' cognitive functioning [30, 32, 33]. Previous article examining 
the role of alpha power, however, do not correct for volumetric MRI 
parameters such as thalamic volume.

In summary, given the shifts in alpha frequency in other disor-
ders with cognitive impairment, the stability of alpha frequency as a 
marker for cognitive reserve in healthy subjects, the primordial role 

of the thalamus in alpha generation, and the known link between 
thalamic integrity and cognition within the MS population, we hy-
pothesized a link between alpha power and cognition in MS. Yet, it 
is unclear if alpha power is a marker of overall cognitive functioning 
or is specific to specific cognitive domains. In this article, we evalu-
ate several cognitive screening tools, radiological parameters, and 
alpha power as possible predictors for cognitive functioning and aim 
to answer the question whether alpha spectral power improves the 
prediction of cognitive scores in addition to the known associations 
with MRI parameters.

PATIENTS AND METHODS

Participants

Data from 68 MS patients and 47 matched healthy controls were 
analyzed [34]. Patients included were diagnosed with MS according 
to the revised McDonald criteria with ages between 18 and 60 years. 
Patients with relapsing–remitting MS (n = 59), primary progressive 
MS (n = 4), secondary progressive MS (n = 3), and CIS (n = 1) and a 
score ≤6 on the Expanded Disability Status Scale (EDSS) were in-
cluded as well as 47 age-matched healthy controls. Exclusion crite-
ria were a recent relapse or treatment with corticosteroids in the 
6 weeks before the study, pacemaker, dental wires, concomitant 
psychiatric disease (e.g., major depressive disorder), epilepsy, and 
benzodiazepine use. Participants underwent structural MRI, MEG 
recording, and cognitive testing.

Ethics

All subjects provided written informed consent. The study 
was approved by the local ethics committees of the University 
Hospital Brussels (Commissie Medische Ethiek UZ Brussel, B.U.N. 
143,201,423,263, 2015/11) and the National MS Center Melsbroek 
(12 February 2015).

Data acquisition

Neuropsychological evaluation

The choice of tests was based on the Brief International Cognitive 
Assessment for Multiple Sclerosis (BICAMS). IPS and working mem-
ory were tested by the Signal Digit Modalities Test (SDMT), verbal 
learning with the California Verbal Learning Test II (CVLT-II), visual 
learning and memory with the Brief Visuospatial Memory Test-
Revised (BVMT-R). Verbal fluency was tested by performing the 
Controlled Oral Word Association Test (COWAT), a test which how-
ever is not included in the BICAMS. [1, 35] The Fatigue Scale for 
Motor and Cognitive Functions (FSMC) questions subjective experi-
ences concerning cognitive and motor fatigue. [36]
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MRI recordings

MRI was performed on a 3 Tesla Achieva scanner (Philips Medical 
Systems). The scanner protocol contained a three-dimensional (3D) 
T1-weighted imaging sequence with parameters: TR: 4.939 ms, FA 
8, 230 × 230 mm2 FOV, 310 sagittal slices, resulting in a 0.53 x 0.53 
x 0.5 mm3 resolution. This image was affinely coregistered to the 
MNI152 atlas.

The median delay between the MRI and MEG session across all 
subjects was 5 days with an interquartile range of 2–10 days. The 
maximal delay between MEG and MRI acquisition was 23 days.

As previously described, brain segmentation was done with 
the icobrain pipeline (version 3.1), which segments T1-weighted 
images into the cerebrospinal fluid, grey matter, and white matter. 
[37] White matter FLAIR (fluid-attenuated inversion recovery) hy-
perintensities are identified and included in white matter segmen-
tation. After skull stripping and bias correction, the T1-weighted 
image is segmented using a probabilistic image intensity model. 
Lesion segmentation is done by the following loop until conver-
gence: segmentation of the T1-weighted image, identification of 
intensity outliers on the FLAIR image, and supplementing the T1 
image with these lesions. T1 hypointensities (black holes) are also 
obtained as a subsegmentation of the FLAIR lesions. Brain vol-
umes (except for lesion load and black hole volume) are normalized 
for head size.

MEG data collection

MEG data were collected at the ULB Hôpital Erasme (Brussels, 
Belgium) on an Elekta Neuromag Vectorview scanner for the first 
30 MS patients and 15 healthy controls and on an Elekta Neuromag 
Triux scanner for the remaining cohort (38 MS patients and 32 
healthy controls) due to an upgrade. Both MEG scanners have a 
similar sensor layout (102 triple sensors consisting of one mag-
netometer and two orthogonal planar gradiometers) placed in a 
magnetically shielded room (Elekta Neuromag & Maxshield; Elekta 
Oy). No significant difference in power spectral density in any of 
the bands was detected between the original scanner and the up-
graded scanner. During MEG data collection, subjects were asked to 
close their eyes and think of nothing specifically (eyes-closed resting 
state) for 10 min. MEG signals were recorded at a 1 kHz sampling rate 
with a 0.1–330 Hz pass-band filter. Subjects' head position, wake-
ful state, eye movements, and electrocardiogram were continuously 
monitored.

Data were preprocessed using MaxFilter software applying the 
temporal extension of signal space separation algorithm (default 
settings) and corrected for subject movement [38]. Further, data 
were filtered into the 0.1–40 Hz range, and artifacts were identified 
through independent component analysis and removed by compar-
ing their time series to simultaneously acquired electrocardiograms 
and electrooculograms. Next, we applied a linearly constrained min-
imum variance beamformer to project on the source grid [39].

Time-series analyses and parcellation

The cerebral cortex was parcellated using a custom parcellation atlas 
to 42 parcels [34]. For each parcel, the first principal component of 
the time series within that parcel was used as that parcel's time 
series. Time series were analyzed by using a discrete fast Fourier 
transform to calculate the relative power for the MEG frequency 
bands (delta [0.5–4 Hz], theta [4–8 Hz], alpha1 [8–10 Hz], alpha2 [10–
12 Hz], beta [12–30 Hz], and gamma [30–40 Hz]). Alpha power was 
divided into alpha1 (normalized power spectral density in the range 
8–10 Hz) and alpha2 (normalized power spectral density in the range 
10–12 Hz) in parallel with other studies examining the role of alpha 
power in cognition in MS [32, 40–42].

Based on the 3D location of the parcels and the parcellation 
atlas previously used while analyzing this dataset, the parcels were 
grouped into five brain regions [34]. Twelve parcels were assigned 
to the occipital region, ten parcels were assigned to the frontal re-
gion, six parcels were assigned to the central gyrus, six parcels were 
assigned to the parietal–temporal junction, and four parcels were 
assigned to the temporal region. Four parcels were excluded due to 
overlap with multiple regions. For each region, the average normal-
ized spectral density was computed for frequencies 8–12 Hz within 
the alpha band. From all studied regions, the occipital region had 
a significantly higher average power spectral density. Predominant 
involvement of occipital regions in mild cognitive impairment due 
to other causes has been suggested in recent studies [18]. For these 
reasons, only this region was selected for further analysis. In the 
supplementary materials, a boxplot of the power spectral density of 
each region in the alpha band can be found (Figure S1).

Statistical analysis

Statistical analyses were performed with MATLAB. Differences in 
the study population were determined using Student's t-test. A set 
of chi-squared tests was performed to see if there were significant 
group differences between males and females, healthy controls and 
people with MS (pwMS), and scanner type. Pearson correlation tests 
were performed to check the correlation between the power spec-
trum, normalized brain volumes, and cognitive test scores.

Best subset regression was performed by including sets of pos-
sible predictors and creating all possible models [43, 44]. For each 
predictor a t-test was performed to see if it contributed significantly 
to the model. The selection ratio was the ratio of times a predictor 
attributed to a significant model divided by the number of significant 
models. Predictors included in more than half of the models were 
typically considered as contributing significant information on the 
outcome parameters. We preferred this search of all possible lin-
ear models as it avoids problems associated with traditional feature 
selection based on, for example, the Akaike Information Criterion. 
Indeed, a stepwise selection of parameters strongly depends on the 
order in which parameters were added [43, 44]. Finally, and next to 
each parameter's selection ratio, we report the contributions of the 
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predictors and their significance for the best-performing model. The 
latter was defined as the model with the highest adjusted R2 (i.e., the 
percentage of explained variance after correction by the number of 
predictors). By doing so, a larger model does not necessarily achieve 
a better score.

RESULTS

Patient characteristics

Sixty-eight MS patients and 47 healthy controls were included. 
Groups were matched for age and sex. MS patients had a lower edu-
cation level (1.1 years difference). As expected, a significant differ-
ence between groups could be detected for each cognitive score, 
where the healthy control group systematically scored better than 
the pwMS group. Normalized brain volumes were significantly lower 
in the pwMS group compared to the control group.

The demographics and cognitive scores of our subjects are sum-
marized in Table 1. In Figure S2, raincloud plots can be found.

In the pwMS group, 87% of the subjects were of the relapsing–
remitting type, 3% were primary progressive, 6% were secondary 
progressive, and 4% were diagnosed with CIS. The EDSS values lie 

between 0 and 6.0 with a median EDSS of 2.5, with 76% of patients 
having an EDSS between 2 and 4.

Cognitive performance measures and 
patient variables

We have summarized the main patient characteristics (gender, age, 
and education), radiological parameters (normalized whole brain 
volume, normalized grey matter volume, normalized white matter 
volume, and normalized thalamus volume), MEG variables (spectral 
power in alpha1 and alpha2 in occipital regions), and the cognitive 
scores (SDMT, CVLT-II, COWAT, BVMT-R, and FSMC-Cog) in Table 1.

As seen in the ‘corr’ column in Table 2, age is negatively correlated 
with scores on the SDMT, CVLT-II, and BVMT. Education and alpha2 
power correlates with all five cognitive measures. Radiological pa-
rameters correlate with cognitive measures (except with COWAT for 
all volumes and BVMT for normalized white matter volume).

Selection ratios, the ‘ratio’ column in Table 2, indicate the num-
ber of times a parameter significantly (p < 0.05) contributed to the 
multilinear model with respect to the number of possible models to 
which the parameter could contribute. If alpha2 power was included 
in the model, it was always retained (selection ratio of 100%) and 

Variable All (N = 115) HC (N = 47)
pwMS 
(N = 68) P value

Sex (women) 68 (59) 28 (60) 40 (59) 0.936

Age (years) 48 (11) 47 (12) 48 (10) 0.542

Education (years) 15 (12) 15 (2) 14 (3) 0.017

Disease duration (years) NA NA 17 (10) NA

Normalized whole brain 
volume

1502 (78) 1539 (69) 1477 (77) <0.001

Normalized grey matter 
volume

881 (52) 898 (45) 868 (57) 0.002

Normalized white matter 
volume

621 (44) 640 (42) 607 (41) <0.001

Normalized thalamus volume 17 (2) 18 (2) 16 (1) <0.001

Occipital lower alpha 0.10 (0.04) 0.09 (0.05) 0.10 (0.04) 0.081

Occipital higher alpha 0.09 (0.04) 0.09 (0.04) 0.08 (0.03) 0.066

SDMT 50 (12) 54 (10) 48 (13) 0.006

CVLT-II 63 (10) 66 (7) 62 (11) 0.022

COWAT 9.7 (3.5) 11 (4) 9 (3) <0.001

BVMT 27 (7) 29 (5) 25 (7) 0.004

FSMC-Cog 26 (10) 18 (6) 31 (10) <0.001

Notes: Sex is indicated as N (%), and all the other parameters as mean (standard deviation). For 
sex, a chi-squared test was performed. For all other variables, a Student's t-test was performed. 
Education was quantified as the number of years of education (6 corresponds to primary school, 
12 to high school, 15 to a bachelor's degree, and 17 to a master's degree). Bold type denotes 
significant outcomes (p < 0.05).
Abbreviations: BVMT-R, Brief Visuospatial Memory Test-Revised; CLVT-II, California Verbal 
Learning Test II; COWAT, Controlled Oral Word Association Test; FSMC-Cog, Fatigue Scale for 
Motor and Cognitive Functions-Cognitive subscore; HC, healthy controls; NA, not applicable; 
pwMS, people with multiple sclerosis; SDMT, Symbol Digit Modalities Test.

TA B L E  1  Population characteristics.
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in the overall best model has a regression coefficient of 0.27 with a 
significance of p < 0.01 as seen in the ‘regr’ column of Table 2. This 
means that in every possible multilinear model that can be con-
structed, the alpha2 power always significantly contributed.

Higher education is linked to the SDMT, COWAT, CVLT-II, and 
FSMC-Cog (negative predictor). A higher thalamic volume is linked 
to the SDMT, BVMT, CVLT-II, and FSMC-Cog (negative predictor). 
Alpha2 power is predictive for the SDMT.

DISCUSSION

This study aimed to examine the potential of quantitative MEG anal-
ysis in the cognitive evaluation of MS patients. We observed a sig-
nificant correlation between alpha2 power and different cognitive 
tests (a positive correlation in the case of SDMT, CVLT-II, COWAT, 
and BVMT-R, and a negative correlation for the FSMC). With a best 
subset regression approach, we could demonstrate that alpha2 
power improved the prediction of IPS independently of more readily 
available MRI parameters. The latter was not the case for the other 
cognitive parameters considered.

Previous studies have already shown altered connectivity 
patterns in the alpha2 band in people with multiple sclerosis as 
compared to healthy controls. Tewarie et al. demonstrated lower 
functional connectivity in the alpha2 band in MS and demonstrated 
a correlation between cognitive functioning and functional con-
nectivity in the beta band [41]. Similarly, Schoonheim et al. demon-
strated an increased synchronization in the theta, lower alpha, and 
beta bands and a decreased synchronization in the upper alpha 
band [45]. Yet, these results did not correct for potential differences 
in power spectral density, nor did they correct for the use of ben-
zodiazepines. Benzodiazepines are known to increase beta power 
strongly (and will thus via normalization affect other bands) and are 
frequently administered to treat sleep, anxiety, or tremor in people 
with MS. This study is one of the first to exclude people with MS 
treated with benzodiazepines because of the neurophysiological 
implications.

In this study, we also demonstrate the use of best subset regres-
sion to provide a reliable estimate of how important one particular 
parameter is among several (potentially correlated) parameters. We 
show that in multilinear models, including clinical parameters and 
traditionally used structural parameters, alpha2 power always sig-
nificantly contributes to the SDMT model. This strongly corrobo-
rates the idea that alpha power contributes information to cognitive 
functioning in a way that is independent of more readily available 
clinical markers. To further assess the contribution of alpha power 
to the prediction of IPS, we reran the best subset regression without 
alpha power. We obtained a corrected R2 of 0.28 instead of 0.37. 
Including alpha2 power thus considerably increases the amount of 
explained variance.

Further, we also demonstrate that alpha2 power is mainly linked 
to IPS and only slightly contributes to other cognitive domains such 

as spatial and verbal working memory, cognitive fatigue, and verbal 
fluency. This may seem contradictive of the literature where alpha2 
power is often linked to general cognitive decline. Here, it is import-
ant to remember that the SDMT is an excellent sentinel test for dif-
ferent cognitive domains [46] and may even predate decline in more 
specialized cognitive domains [47].

Neuropsychological screening tests are frequently influenced by 
education, learning effect, psychological well-being, or fatigue at the 
moment of taking the test; while in resting state neurophysiological 
recordings, no learning effects are present and could therefore pro-
vide a more objective assessment of cognitive functioning [12]. In 
clinical practice, a model incorporating patient characteristics (age, 
education), radiological parameters (such as thalamic volume), and 
neurophysiological data (alpha2 power density) could prove more 
robust to factors that affect cognitive test scores, but not the cogni-
tive domains themselves.

In this study, longer time series of up to 5 min of resting-state 
eyes-closed MEG data were analyzed as opposed to epoch selection. 
Whereas epoching may provide cleaner data, it may fall victim to 
selection bias of manual selection of epochs and fail to incorporate 
intra-individual alpha-band oscillations that may also be associated 
with cognitive function, as is the case in other neurodegenerative 
diseases such as Alzheimer's dementia [20]. Further, alpha power 
may be affected by the frequency with which bursts of alpha oscil-
latory activity may be present. While this is not captured in epoch-
selected analyses, a reduced occurrence of alpha power would lower 
the alpha peak and thus be reflected in our results. However, more 
advanced modeling (e.g., through the use of functional connectivity 
dynamics [34, 48]), may be necessary to fully capture the oscillatory 
dynamics [34].

One limitation of this study is a small but significant difference 
in education level at baseline. We also did not correct for disease-
modifying treatments (DMTs) as we do not expect any effect of 
DMTs on neurophysiological functioning and alpha power. As our 
cohort contained seven people with progressive onset, we redid the 
analyses excluding those seven patients and observed no substantial 
changes. Whereas we considered it a strength to exclude symptom-
atic treatments that could affect neurophysiology (e.g., benzodiaz-
epines) [34], it is important to realize that this choice also limits the 
generalizability of our results to patients not being treated with ben-
zodiazepines. While MEG is not widely available in clinical practice, 
this study can act as a stepping stone for further research in which 
our findings could be extrapolated to widely available electroen-
cephalography or to optically pumped magnetometer MEG sensors 
which might replace SQUID (superconducting quantum interference 
device) sensors in the future [49].

Finally, we assessed MEG during rest and specific tasks. As 
correctly pointed out by Khan et al. [40], the analysis of MEG data 
during different tasks is an essential future research avenue. One 
could expect stronger correlations for specific cognitive domains 
when people are scanned during specific tasks. Yet, one would also 
lose the generalizability that the resting-state condition brings.



6  |     DE COCK et al.

TA
B

LE
 2

 
Re

gr
es

si
on

 o
ut

co
m

e.

Pr
ed

ic
to

r

SD
M

T
BV

M
T-

R
CO

W
AT

C
V

LT
-I

I
FS

M
C-

Co
g

co
rr

re
gr

ra
tio

co
rr

re
gr

ra
tio

co
rr

re
gr

ra
tio

co
rr

re
gr

ra
tio

co
rr

re
gr

ra
tio

A
ge

−0
.4

3 
**

*
−0

.2
2*

70
%

−0
.2

0*
0.

00
2%

−0
.0

6
0.

00
0%

−0
.1

8
0.

14
1%

0.
06

0.
00

0%

Ed
uc

at
io

n
0.

34
 **

*
0.

23
**

10
0%

0.
22

*
0.

17
6%

0.
30

**
0.

29
**

10
0%

0.
28

**
0.

18
*

52
%

−0
.2

4*
−0

.2
1*

75
%

N
or

m
al

iz
ed

 
gr

ey
 m

at
te

r 
vo

lu
m

e

0.
46

 **
*

0.
00

44
%

0.
26

**
0.

00
8%

0.
12

0.
00

0%
0.

37
**

*
0.

25
29

%
−0

.1
6

0.
17

0%

N
or

m
al

iz
ed

 
w

hi
te

 
m

at
te

r 
vo

lu
m

e

0.
17

−0
.2

0
17

%
0.

18
0.

00
0%

0.
11

0.
00

0%
0.

24
**

0.
00

7%
−0

.2
5*

*
0.

00
13

%

N
or

m
al

iz
ed

 
w

ho
le

 b
ra

in
 

vo
lu

m
e

0.
41

**
*

0.
00

23
%

0.
27

**
0.

00
9%

0.
13

0.
00

0%
0.

40
**

*
0.

00
30

%
−0

.2
5*

0.
00

13
%

N
or

m
al

iz
ed

 
th

al
am

us
 

vo
lu

m
e

0.
38

**
*

0.
33

**
31

%
0.

34
**

*
0.

26
**

68
%

0.
14

0.
05

0%
0.

41
**

*
0.

25
*

55
%

−0
.3

2*
**

−0
.3

5*
*

91
%

A
lp

ha
1 

(o
cc

ip
ita

l)
−0

.0
7

0.
13

0%
−0

.2
4*

**
−0

.1
2

38
%

−0
.0

2
0.

00
0%

−0
.2

3*
−0

.1
3

20
%

0.
11

0.
00

0%

A
lp

ha
2 

(o
cc

ip
ita

l)
0.

43
**

*
0.

34
**

*
10

0%
0.

19
*

0.
00

1%
0.

18
0.

14
0%

0.
16

0.
00

1%
−0

.2
1*

−0
.1

5
4%

R2
*

0.
37

0.
17

0.
12

0.
25

0.
17

N
ot

es
: I

n 
th

e 
le

ft
 c

ol
um

n 
pr

ed
ic

to
rs

 fo
r p

er
fo

rm
an

ce
 o

n 
th

e 
SD

M
T,

 B
V

M
T,

 C
V

LT
-I

I, 
an

d 
FS

M
C-

C
og

 a
re

 s
ho

w
n.

 F
or

 e
ac

h 
co

gn
iti

ve
 te

st
, t

he
 re

su
lts

 o
f P

ea
rs

on
 c

or
re

la
tio

n 
ar

e 
sh

ow
n 

in
 th

e 
fir

st
 c

ol
um

n 
(c

or
r).

 
Th

e 
se

co
nd

 c
ol

um
n 

sh
ow

s 
th

e 
be

st
 m

ul
til

in
ea

r m
od

el
 o

bt
ai

ne
d 

th
ro

ug
h 

be
st

 s
ub

se
t r

eg
re

ss
io

n 
(re

gr
), 

an
d 

th
e 

fin
al

 c
ol

um
n 

sh
ow

s 
th

e 
se

le
ct

io
n 

ra
tio

 (r
at

io
) o

f a
ll 

pr
ed

ic
to

rs
 a

cr
os

s 
al

l m
od

el
s.

 Z
er

o 
m

ea
ns

 th
e 

pa
ra

m
et

er
s 

w
er

e 
ne

ve
r r

et
ai

ne
d,

 a
nd

 1
00

%
 m

ea
ns

 it
 w

as
 re

ta
in

ed
 in

 e
ac

h 
po

ss
ib

le
 m

od
el

. A
s 

an
 e

xa
m

pl
e:

 in
 u

ni
va

ria
te

 m
od

el
s,

 th
e 

SD
M

T 
si

gn
ifi

ca
nt

ly
 c

or
re

la
te

s 
w

ith
 a

ge
, e

du
ca

tio
n,

 n
or

m
al

iz
ed

 g
re

y,
 w

hi
te

, 
w

ho
le

, a
nd

 th
al

am
ic

 v
ol

um
es

, a
nd

 a
lp

ha
2 

po
w

er
. I

n 
th

e 
m

ul
til

in
ea

r m
od

el
 th

at
 e

xp
la

in
s 

m
os

t v
ar

ia
nc

e 
of

 th
e 

SD
M

T,
 a

ge
, e

du
ca

tio
n,

 n
or

m
al

iz
ed

 th
al

am
ic

 v
ol

um
e,

 a
nd

 a
lp

ha
2 

po
w

er
 s

ig
ni

fic
an

tly
 c

on
tr

ib
ut

e.
 

Fu
rt

he
r, 

w
e 

al
so

 s
ee

 th
at

 a
lp

ha
2 

al
w

ay
s 

si
gn

ifi
ca

nt
ly

 c
on

tr
ib

ut
es

 to
 e

ve
ry

 m
od

el
 p

re
di

ct
in

g 
th

e 
SD

M
T.

 *p
 <

 0
.0

5,
 *

*p
 <

 0
.0

1,
 *

**
p <

 0
.0

01
. B

ol
d 

ty
pe

 d
en

ot
es

 s
ig

ni
fic

an
t o

ut
co

m
es

 (p
 <

 0
.0

5)
 a

nd
 ra

tio
s 

>5
0%

. 
Th

e 
la

tt
er

 m
ea

ns
 th

at
 th

es
e 

pa
ra

m
et

er
s 

si
gn

ifi
ca

nt
ly

 c
on

tr
ib

ut
ed

 to
 a

t l
ea

st
 5

0%
 o

f a
ll 

m
ul

til
in

ea
r m

od
el

s 
in

 w
hi

ch
 th

ey
 w

er
e 

in
cl

ud
ed

. S
ee

 s
ec

tio
n 

on
 S

ta
tis

tic
al

 A
na

ly
si

s 
fo

r m
or

e 
de

ta
ils

 o
n 

be
st

 s
ub

se
t 

re
gr

es
si

on
.

A
bb

re
vi

at
io

ns
: B

V
M

T-
R,

 B
rie

f V
is

uo
sp

at
ia

l M
em

or
y 

Te
st

-R
ev

is
ed

; C
LV

T-
II,

 C
al

ifo
rn

ia
 V

er
ba

l L
ea

rn
in

g 
Te

st
 II

; c
or

r, 
co

rr
el

at
io

n;
 C

O
W

AT
, C

on
tr

ol
le

d 
O

ra
l W

or
d 

A
ss

oc
ia

tio
n 

Te
st

; F
SM

C-
C

og
, F

at
ig

ue
 S

ca
le

 fo
r 

M
ot

or
 a

nd
 C

og
ni

tiv
e 

Fu
nc

tio
ns

-C
og

ni
tiv

e 
su

bs
co

re
; r

at
io

, s
el

ec
tio

n 
ra

tio
; r

eg
r, 

re
gr

es
si

on
; S

D
M

T,
 S

ym
bo

l D
ig

it 
M

od
al

iti
es

 T
es

t.



    |  7ALPHA POWER AS A MARKER OF IPS IN MS

CONCLUSIONS

This study demonstrates that occipital upper alpha power is sig-
nificantly associated with a subject's score on the SDMT, a test 
aimed at assessing IPS. The upper alpha power increased the ex-
plained variance from 27% to 38% in multilinear models, including 
clinical parameters and the typically assessed brain volumes. Our 
work corroborates the idea that the alpha band may be crucial for 
IPS [50].
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